

UWB ProTag2s 使用手册

Version 1.2

目录

1	研创	物联定位开发套件简介3
	1.1	研创 UWB 系列及其套件3
	1.2	研创物联 UWB 系列模块详细参数对比3
	1.3	模块概述4
	1.4	应用场合4
	1.5	国内外室内定位技术的优缺点4
	1.6	专业术语表5
2	主要	参数6
	2.1	出厂程序固件6
	2.2	硬件参数6
	2.3	硬件 IO 分配一览6
	2.4	实测频谱6
	2.5	硬件接口定义7
3	常见	技术问题问答8
	3.1	原理8
	3.2	使用8
4	UWB	; 定位套件测试说明9
	4.1	模式配置9
	4.2	定位测试: 3基站+1标签测试9
	4.3	测距测试: 1基站+3标签测试11
5	研创	定位系统数据入网解决方案简介12

	5.1	概述	12
6	UWB	3 模块二次开发	13
	6.1	开发环境和工具	13
	6.2	固件更新	13
	6.3	从 USB 虚拟串口输出数据的方法	13
7	РС 🛓	上位机通讯数据格式与二次开发	15
	7.1	实时定位系统上位机简介	15
	7.2	实时定位系统上位机界面	15
	7.3	数据帧 TOF Report Message	17
	7.4	日志文件 Log Files	18
	7.5	三边定位法 Trilateration 的原理与计算方法	18
8	UWB	3 产品化开发	20
	8.1	数据标定方法	20
	8.2	进一步提升测距刷新速率的方法	20
	8.3	进一步提升定位刷新速率的方法	21
	8.4	遮挡对室内定位 UWB 的影响	21
9	AT 指	令集	22
	9.1 AT	-+QSET 指令	22
1	0 订购	信息	23
	10.1	联系方式	23
	10.2	对公转账信息	23
1	1 文档	管理信息表	24

1 研创物联定位开发套件简介

1.1 研创 UWB 系列及其套件

项目	简介	提供的资料内容
UWB Mini3	模块采用 STM32F105RCT6 单片机为主控芯片。通过 SPI,读写 UWB	•UWB Mini 硬件 PDF 原理图
开发板	DWM1000 模块。该模块基站标签一体,通过拨码开关进行切换。此	•提供官方数据手册
	外, 该模块体积如一元硬币, 是开发小型标签的理想之鉴。	
UWB Mini3s	模块采用 STM32F103T8U6 单片机为主控芯片。通过 SPI,读写 UWB	•支持 USB 虚拟串口
开发板	DW1000 模块。通讯距离可达 80 米。	•提供上位机演示
		•提供官方数据手册,卖家技术支持
UWB Mini3sPlus	模块采用 STM32F103T8U6 单片机为主控芯片。通过 SPI,读写 UWB	•支持 USB 虚拟串口
开发板	DW1000 模块。通讯距离可达 300 米。	•提供上位机演示
		•提供官方数据手册,卖家技术支持
UWB ProTag2s	UWB ProTag2s 采用 STM32 单片机为主控芯片。该产品集成了陶瓷天	•支持 USB 虚拟串口
	线及所有的射频电路、DW1000外围电路、时钟电路、锂电池充放电管	•提供上位机演示
	理电路、LIS3DH 超低功耗加速度传感器,并内置一颗 250mAh 可充电	•提供官方数据手册,卖家技术支持
	锂电池。该模块基于 TWR 双边测距算法,其测距误差小于 10cm;用	
	来定位目标,其定位误差小于 15cm;并且该模块支持高达 6.8Mbps	
	的数据传输率。该模块作为标签,携带非常方便,并且该模块支持通过	
	USB 进行 AT 指令设置。	
UWB Tag 手持器	UWB Tag 手持器开发板,旨在实现将 UWB 系列模块从串口输出的数	•提供官方数据手册,卖家技术支持
开发板	据按照一定的格式进行解析,结合研创物联独家 Trilateration 算法,简	•有偿提供源码
	化数学运算真正实现在 STM32F103C8T6 单片机(嵌入式系统)上对	
	测距数据实时解算,并且将坐标计算结果 X,Y,Z 显示在 OLED 上。	

1.2 研创物联 UWB 系列模块详细参数对比

表 1.2 研创物联 UWB 系列模块详细参数对比

	Mini3 模块	Mini3s 模块	Mini3s Plus 模块	Mini4 模块	ProTag2s 标签
发行时间	2015.8.2	2016.10.2	2017.5.17	即将上市	2018.12.17
特色	体积小	性价比高	距离远	功耗低	可充电, 距离远
PCB 尺寸	30mm*23mm	46mm * 20mm	58mm*24mm	48mm*32mm	50mm*35mm
PCB 板材	普通2层板	高频4层板	高频4层板	高频4层板	高频4层板
供电接口	USB/正负接线柱	USB/正负接线柱	USB/正负接线柱	USB/正负接线柱	USB
USB 通讯接口	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
TTL 串口接口	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SWD 下载调试接口	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
主控芯片	STM32F105RBT6	STM32F103T8U6	STM32F103T8U6	STM32F103C8T6	STM32F103T8U6
锂电池管理芯片	×	×	×	\checkmark	\checkmark
天线	陶瓷板载天线	外置棒状天线	外置棒状天线	陶瓷板载天线	陶瓷板载天线
发射功率	-45dbm/Mhz	-42dbm/Mhz	-22dbm/Mhz	-45dbm/Mhz	-30dbm/Mhz
工作信道	CH2 / CH5	CH2 / CH5	CH2	CH2 / CH5	CH2
稳定有效覆盖半径	30m	80m	300m	30m	300m
测距精确度误差	<10 cm	<10 cm	<10 cm	<10 cm	<10 cm
定位精确度误差	<15cm	<15 cm	<15 cm	<15 cm	<15 cm

1.3 模块概述

1.3.1 UWB ProTag2s 概述

UWB ProTag2s 采用 STM32 单片机为主控芯片。该产品集成了陶瓷天线及所有 的射频电路、DW1000 外围电路、时钟电路、锂电池充放电管理电路、 LIS3DH 超低功耗加速度传感器,并内置一颗 250mAh 可充电锂电池。该模块 基于 TWR 双边测距算法,其测距误差小于 10cm;用来定位目标,其定位误 差小于 15cm;并且该模块支持高达 6.8Mbps 的数据传输率。该模块作为标 签,携带非常方便,并且该模块支持通过 USB 进行 AT 指令设置。

图 1.3.1 UWB ProTag2s 图示

1.3.2 支持信道

UWB 信道 UWB Channel	中心频率 (MHz) Centre Frequency	频段 (MHz) Band	带宽 (MHz) Bandwidth
1	3494.4	3244.8 - 3744	499.2
2	3993.6	3744 - 4243.2	499.2
3	4492.8	4243.2 - 4742.4	499.2
4	3993.6	3328 - 4659.2	1331.2*

表 1.3.2 可支持的 UWB 信道

注: DW1000 的最大接收带宽大约 900MHz

1.4 应用场合

UWB ProTag2s 最大的优势在于体积小,射程远。根据客户提供的需求以及实际应用情况, UWB ProTag2s 室内定位的产品可应用在如下场景:

- 智能行李箱、智能儿童车;
- 工厂集装箱、货物定位;
- 运动员定位;
- 超市人员定位;
- 在博物馆里更有效地帮助访客了解展品信息和观看展览;
- 矿井人员定位;

1.5 国内外室内定位技术的优缺点

近几年来,包括谷歌、微软、苹果、博通等在内的一些科技巨头,还有一些世界有名的大学都在研究室内定位技术。根据国 内外文献的研究与调查,蓝牙、无线射频等,在办公室、家庭、工厂等场景的室内定位得到了广泛应用。国内外主流室内定 位技术优缺点如下表所示:

室内定位技术	优点	缺点
超声波定位技术	精度较高,结构简单。	受多径效应和非视距传播影响很大,同时需要大量
		的底层硬件设施投资,成本太高。
蓝牙定位技术/ ibeacon	设备体积小、易于集成,容易推广普	对于复杂的空间环境,蓝牙系统的稳定性稍差,受
	及。	噪声信号干扰大。
射频识别技术	标识的体积比较小,造价比较低。	作用距离近,不具有通信能力,而且不便于整合到
		其他系统之中。

表 1.5 国内外主流室内定位技术优缺点

UWB 超带宽技术	穿透力强、功耗低、抗多径效果好、安	遇到遮挡物、金属等会有一定影响,价格略贵,离
	全性高、系统复杂度低、能提供精确定	大规模生产仍有一段距离。
	位精度。	
SLAM 技术	在自身位置不确定的条件下, 在完全未	图像数据量巨大,设备价格非常贵,适合研究,不
	知环境中创建地图,同时利用地图进行	适合量产。
	自主定位和导航。	

1.6 专业术语表

表 1.6 专业术语缩写含义

简写	英文全称	含义
ANCHOR		基站,也称作信标锚点,指通过其它方式预先获得位置坐标的节点
DW1000		Decawave 出的一款芯片
DWM1000		Decawave 出的一款模组
PSR	preamble symbol repetitions	前导符号重复
RTLS	real time location system	实时定位系统
TAG		标签
TOF	time of flight	TOF 飞行时间测距法,它主要利用信号在两个异步收发机(Transceiver)(或
TOP	time of hight	被反射面)之间往返的飞行时间来测量节点间的距离。
TWR	two-way ranging	双向测距法,即两个异步收发机(Transceiver)都能获得测距值。
		UWB (Ultra Wideband)是一种无载波通信技术,利用纳秒至微微秒级的非正
UVVD		弦波窄脉冲传输数据。

2 主要参数

2.1 出厂程序固件

出厂程序版本号: 1.8.7.7。该程序已加入蜂鸣器驱动与加速度传感器驱动。

2.2 硬件参数

表 2.2 UWB ProTag2s 硬件参数

	基本参数		无线参数
PCB工艺	4 层高频板	通讯速率	110 kbit/s 与 6.8 Mbit/s
充电接口	micro-USB	工作频率	3.5 GHz ~ 4.2 GHz
通讯接口	micro-USB	工作频道	CH2
外部晶振	8Mhz	通讯距离	>300m(配合 Mini3sPlus 无遮挡)
外壳尺寸	51mm * 36mm * 15mm	数据抖动	典型±10cm, 一般遮挡±30cm
电池容量	250mAH	加速度传感器	LIS3DH

2.3 硬件 IO 分配一览

表 2.3 研创多款 UWB 硬件 IO 口分配一览

	Mini3s	Mini3s Plus	Protag 2s	引脚	备注
PA0	DW_RSTn	DW_RSTn	DW_RSTn		
PA1	-	-	PGOOD	0:USB 有电源输入充电中	1:无 USB 接入
PA2	-	-	CHG	0:电池没充满	1:电池充满了
PA3	-	USB-EN	USB-EN		
PA4	DW_NSS	DW_NSS	DW_NSS		
PA5	DW_SCK	DW_SCK	DW_SCK	LIS3DH – SPI 接口	
PA6	DW_MISO	DW_MISO	DW_MISO	LIS3DH – SPI 接口	
PA7	DW_MOSI	DW_MOSI	DW_MOSI	LIS3DH – SPI 接口	
PA8	DW_EXTON	DW_EXTON	DW_EXTON		
PA9	USART1_TX	USART1_TX	USART1_TX	串口 1-TXD	
PA10	USART1_RX	USART1_RX	USART1_RX	串口 1-RXD	
PA11	USB-DM	USB-DM	USB-DM	USB 接口	
PA12	USB-DP	USB-DP	USB-DP	USB 接口	
PA13	SWDIO	SWDIO	SWDIO	SWD 接口	
PA14	SWCLK	SWCLK	SWCLK	SWD 接口	
PA15	-	-	LIS_CS	加速度传感器片选	
PB0	DW_WUP	DW_WUP	DW_WUP		
PB1	-	-	ADC_VBAT	ADC 数值 x2 为锂电池电压	
PB2	BOOT1	BOOT1	Buzzer	蜂鸣器	
PB3	-	-	BQ_TD_EN	0: 充电使能	1: 充电失能
PB4	-	-	INT	LIS3DH 中断脚	
PB5	DW_IRQN	DW_IRQN	DW_IRQN		
PB6	LED1	LED1	LED1	普通可控制 LED	
PB7	-	-	LED2	运行灯	

2.4 实测频谱

将 UWB ProTag2s 的天线接到频谱仪 FSL-6(罗德与施瓦茨公司)上,测得 Channel 2 中心频率为 4GHz,最大增益-23.12dbm,如下图所示。

2.5 硬件接口定义

USB 接口,采用标准 MICROUSB 接口,可以给标签充电,亦可读写标签数据。

工作指示灯,由程序 PB7 进行控制,工作指示灯闪烁,表明标签正常工作中;工作指示灯快闪,表明标签等待配置。 开机按键,在开机的状态下,按下按键整机电源关闭;在关机的状态下,按下按键整机电源开启。

3 常见技术问题问答

3.1 原理

3.1.1 测距原理是什么?

双向飞行时间法(TW-TOF, two way-time of flight)每个模块从启动开始即会生成一条独立的时间戳。模块 A 的发射机在其时间戳上的 Ta1发射请求性质的脉冲信号,模块 B 在 Tb2 时刻发射一个响应性质的信号,被模块 A 在自己的时间戳 Ta2 时刻接收。 有次可以计算出脉冲信号在两个模块之间的飞行时间,从而确定飞行距离 S。

S=Cx[(T_{a2}-T_{a1})-(T_{b2}-T_{b1})]/2 (C 为光速)

3.1.2 定位的原理是什么?

1) 距离 = 光速 * 时间差 / 2; XY 平面, 3 个圆, 能够确定一个点;

2) XYZ 空间, 4个圆, 能够确定一个空间点;

3.2 使用

3.2.1 本产品能与前几代产品兼容吗?

答:可以配合 Mini3 / Mini3s / Mini3sPlus 作为基站使用。推荐使用 Mini3sPlus 作为基站,以获得最佳的体验效果。

3.2.2 本模块能穿墙测距吗?

答:配合 Mini3s Plus 基站,可穿一堵墙。有效射程范围缩短 50%,精度会有一定的影响。

3.2.3 本模块在安装注意事项

- UWB 模块模块与墙体、桌子、货架、金属柜等障碍物保持至少 2m 距离。否则 将会影响定位数据,导致测距结果不准;
- 基站天线周围尽量不要被遮挡。用户在进行标准测量时,基站请放在三脚架
 上,距离地面 1.5 米以上;
- 测试时,请将基站天线拧上,以保证模块的性能发挥到最优;

4 UWB 定位套件测试说明

研创 UWB 定位系统至少由四个 UWB 模块组成,即 3 基站+1 标签。此后,可购买标签和基站,实现该系统标签和数量的扩展,该 DEMO 最大能支持 4 基站+8 标签。但是这不意味着这个系统最大只能支持 8 个标签,通过定制开发,能够支持上万标签。

4.1 模式配置

模式配置在出厂时已经设置好,如无特殊情况,不需要变更,模块到手即可测试,可直接跳过此步骤。 购买 8 标签及以下的用户,产品支持 AT+SW 指令,<u>详见:9.1章</u> 购买 9 标签及以上的用户,产品支持 AT+QSET 指令,详见:9.2章

4.2 定位测试: 3 基站+1 标签测试

- 1) 硬件平台搭建: 3 基站 Mini3sPlus, 1 标签 ProTag2s
- 2) 安装虚拟串口驱动。见本章节 6.4;
- 3) A0 基站与 USB 直接连接;
- 打开上位机软件 DecaRangeRTLS.exe,如出现如图 4.2.2,可能有 以下几个原因:
 - 虚拟串口驱动安装失败,软件无法找到 COMx;
 - 硬件上 USB 未连接; Micro-USB 线不支持通讯或使用了损 坏的 Micro-USB 线;

注 1: 大部分 Win7 用户无法打开上位机,然而可以看到 DecaRangeRTLS.exe 后台进程,遇到该问题(目前无法解决该问题),请换一台电脑尝试;

注 2: 部分高分屏用户(2K 屏或者 4K 屏用户)会产生上位机文字显示不全的问题,可以通过调整分隔符进行显示;

- 5) 所有标签 Tag 用充电宝供电;
- 6) A1/A2 基站用充电宝供电;

图 4.2.2 上位机无法通讯

7) 产品摆放注意事项

基站和标签的摆放直接影响测距的准确性,并直接影响定位的准确度与精确度。以下是几种常见的摆放错误:

- 将模块放在金属附近。无论是内置陶瓷天线还是外置棒状天线,在遇到金属时,天线信号会被金属直接吸收
- 将模块平放在桌面、将模块黏在墙壁、手拿住天线,将会影响 UWB 天线的波束, 且造成一定的多径效应

将模块放在金属附近 基站正确的安装方式如下图所示:

将模块平放在桌面

将模块黏在墙壁上

手拿住天线

- 8) 操作软件 DecaRangeRTLS
 - 在 Settings 选项里,勾选 Tracking / Navigation Mode (默认已勾选)。
 - 打开上位机,Tag / Anchor Tables 里的距离数据已经开始跳动,表明测距已经开始。
 - 在左上角的基站表里,勾选 Anchor ID 0 / 1 / 2,并根据实际的基站摆放情况,输入基站的 XYZ 相对坐标。一般来说, 我们将 A0 设置成 (0, 0, 1.5),也就是 A0 的高度为 1.5m。软件上默认 A0 A1 A2 处于同一高度,所以,在摆放时, 这 3 个基站需要处于同一高度。
 - 当基站坐标成功设定完,坐标即可解算出来 (方程有实数根的解),否则 Tag 的坐标不显示

图 4.2.7 PC-RTLS 演示软件截图与使用

9) 要想获得更庞大的定位系统,最好需要四个基站。为了获得较好的 z 轴精度,对于 4 个基站的情况来说, A3 放置的高度 最好要比 A0/A1/A2 高出 1 米或者 0.5 米, A0/A1/A2 处于同一个平面。

图 4.2.3 定位 4 基站+多标签硬件平台示意图

4.3 测距测试: 1基站+3标签测试

5 研创定位系统数据入网解决方案简介

5.1 概述

该方案旨在实现将 UWB 标签模块从串口输出的 TOF Report Message 数据传入远程服务器,实现开发者对 UWB 定位数据的远程管理与监控。采用有人 USR-WIFI232-B2 WIFI/以太网模块,通过简单的设置,即可实现数据入网。

图 5.1 定位数据传感物联总框架图

采用区域划分的方法,每个相对独立区域摆放 3 基站,区域和区域之间的基站信号可互相覆盖。当标签进入一个区域时,该 区域的基站会自动识别,并通过 A0 收集信息,通过 WIFI 或者以太网入网 (见图 5.2)。该方案的的优点是:技术层面,每个 房间的基站,进行无线通讯,每个房间和电脑 (服务器)连接需要用有线连接,布线较为简单。

图 5.2 单个区域 UWB 定位架构图

6 UWB 模块二次开发

6.1 开发环境和工具

在进行二次开发之前,需要安装一系列软件驱动,从而保证开发的基础条件。所需的安装软件已经在提供的百度云网盘中。

表 6.1.1 UWB Mini 套件开发软件

工具	作用
ST-LINK	ST-LINK 是一款可以在线仿真以及下载 STM8 以及 STM32 的开发工具。功能秒杀 J-Llink。
	STM32 的开发平台,Keil 系列软件却被中国 80%以上的软硬件工程师使用,但凡与电子相关的
	专业,都会开始从单片机和计算机编程开始学习,而学习单片机自然会用到 Keil 软件。国内由
KEIL-IVIDK5.20	米尔科技、亿道电子、英倍特提供 Keil 的销售和技术支持服务,他们是 ARM 公司合作伙伴,
	也是国内领先的嵌入式解决方案提供商。
DecaRangeRTLS.exe	室内定位上位机,支持定位图形界面显示,支持地图导入
XCOM	正点原子开发的一款优秀的串口调试助手软件

6.2 固件更新

详情见手册 aps003-UWB 模块固件更新。

6.3 从 USB 虚拟串口输出数据的方法

6.3.1 安装 ST 虚拟串口驱动

虚拟串口驱动是由 ST 公司发布的驱动。请按照操作系统进行选择版本。Win7 用户请先尝试 VCP_V1.4.0_Setup.exe。

表 6.4 虚拟串口驱动支持的系统

操作系统	支持情况
Windows 98 / ME / XP / Vista	不支持
Win7 32 位系统	不支持
Win7 64 位系统	安装 VCP_V1.4.0_Setup.exe 或 VCP_V1.3.1_Setup.exe
Windows 8/8.1	安装 VCP_V1.4.0_Setup.exe
Windows 10 (推荐)	安装 VCP_V1.4.0_Setup.exe

1) 打开 VCP_V1.4.0_Setup.exe, 按照安装流程, 点击 OK 或 NEXT, 完成虚拟串口驱动文件拷贝与展开, 请注意: 该步仅仅 是完成了文件的解压。

2) 进入如下目录, C:\Program Files (x86)\STMicroelectronics\Software\Virtual comport driver\Win8

- 3) 电脑为 64 位系统的用户,找到 dpinst_amd64.exe,进行安装;电脑为 32 位系统的用户,找到 dpinst_x86.exe,进行安装;
- 4) 提示安装成功,用 USB 线将 A0 基站与电脑连接,我的电脑>>属性>>设备管理器里,在"端口 (COM 和 LPT)"一栏,可 以看到 *COMx*。至此,ST 虚拟串口驱动安装完毕。完成驱动安装后,请重启电脑。

> 員 端□ (COM 和 LPT)

STMicroelectronics Virtual COM Port (COM3)

图 6.4.3 设备管理器中发现虚拟串口 COM3

- 5) 部分 Win7 用户会出现无法安装驱动的情况(驱动出现感叹号),这是由于 USB 虚拟串口缺失文件所致(原因:系统装机 使用了 Ghost 等方式)。解决方案如下,请联系卖家获得补丁包:
 - 将 mdmcpq.inf 复制到 C:/windows/inf/里面去;

- 将 usbser.sys 复制到 C:/windows/system32/drivers/里面去;
- 安装驱动软件 VCP_V1.3.1_Setup.exe; (注: 该部分 Win7 用户需安装 V1.3.1 版本)
- 然后重新插入 USB 线,并在设备管理器界面右键选更新驱动;

6.3.2 打开串口调试助手查看

USB 虚拟串口自适应波特率、数据位、停止位和校验位。所以,上述参数无需修改和选择,点击"打开串口",即可观察到 TOF Report Message 数据流。

mc	01	00000451	000000000	000000000	000000000	0188	89	00022640	a0:0
mr	01	00000451	00000000	000000000	000000000	0188	89	40224022	a0:0
mс	01	0000046e	00000000	00000000	00000000	0189	8a	00022758	a0:0
mr	01	0000046e	00000000	00000000	00000000	0189	8a	40224022	a0:0
mс	01	00000431	00000000	00000000	00000000	018a	8b	00022870	a0:0
mr	01	00000431	00000000	00000000	00000000	018a	8b	40224022	a0:0
mс	01	00000448	00000000	00000000	00000000	018b	8c	00022988	a0:0
mr	01	00000448	00000000	00000000	00000000	018b	8c	40224022	a0:0
mс	01	0000046e	00000000	00000000	00000000	018c	8d	00022aa0	a0:0
mr	01	0000046e	00000000	00000000	00000000	018c	8d	40224022	a0:0
mс	01	0000047c	00000000	00000000	00000000	018d	8e	00022bb8	a0:0
mr	01	0000047c	00000000	00000000	00000000	018d	8e	40224022	a0:0
mс	01	00000451	00000000	00000000	00000000	018e	8f	00022cd0	a0:0
mr	01	00000451	00000000	00000000	00000000	018e	8f	40224022	a0:0
mс	01	0000045f	00000000	00000000	00000000	018f	90	00022de8	a0:0
mr	01	0000045f	00000000	00000000	00000000	018f	90	40224022	a0:0
mc	01	00000443	00000000	000000000	000000000	0190	91	00022f00	a0:0
mr	01	00000443	00000000	000000000	000000000	0190	91	40224022	a0:0
mc	01	0000042c	00000000	000000000	000000000	0191	92	00023018	a0:0
mr	01	0000042c	00000000	000000000	000000000	0191	92	40224022	a0:0
_									

图 6.4.2 TOF Report Message 数据流

7 PC 上位机通讯数据格式与二次开发

7.1 实时定位系统上位机简介

本章节介绍一下 PC 上位机的使用。本上位机软件使用 *QT 5.7.0 MinGM* 开发,编写语言为 C++。Qt 是一个 1991 年由奇趣科技 开发的跨平台 C++图形用户界面应用程序开发框架。它既可以开发 GUI 程序,也可用于开发非 GUI 程序,比如控制台工具和 服务器。Qt 是面向对象的框架,使用特殊的代码生成扩展(称为元对象编译器)以及一些宏,易于扩展,允许组件编程。 2014 年 4 月,跨平台集成开发环境 Qt Creator 3.1.0 正式发布,实现了对于 iOS 的完全支持,新增 WinRT、Beautifier 等插件, 废弃了无 Python 接口的 GDB 调试支持,集成了基于 Clang 的 C/C++代码模块,并对 Android 支持做出了调整,至此实现了全 面支持 iOS、Android、WP。

本上位机实现的主要功能有:

- 1) 与 UWB 模块的虚拟串口 Virtual COM Port 建立连接;
- 2) 读取来自 UWB 模块的 TOF report message;
- 3) 基站列表,在该列表可以设置基站的实际摆放位置;
- 4) 标签列表,该列表可以显示标签距离基站的距离、以及标签的位置 (XYZ 坐标);
- 5) 地图显示, 支持自定义导入一张 PNG 格式的地图, 能实现缩放与坐标微调;
- 6) 其他参数设置;

7.2 实时定位系统上位机界面

图 7.2 RTLS 上位机界面

7.2.1 定位系统 Graphics

7.2.1.1 Tag and Anchor Tables Tag Table 包含 Tag 的 ID、测距信息、定位坐标。

- R95 统计学变量参考资料:
 https://baike.baidu.com/item/%E7%BD%AE%E4%BF%A1%E5%8C%BA%E9%97%B4/7442583?fr=aladdin
- Tag 解算的位置是根据标签-基站距离解算出来的,具体解算方法见 7.5 节

A	nchor ID	X (m)	Y (m)	Z (m)
1	0	0.00	0.00	3.00
1	1	6.00	0.00	3.00
1	2	0.00	4.00	3.00
	3	5.00	5.00	3.00

Anchor Tables 包含基站 Anchor 的 ID,基站的位置信息。

7.2.2 状态栏 Status Bar

左下角状态栏显示的内容如下:

- "DecaRangeRTLS Anchor/Tag ID Mode" 打开软件,并且 COM 口连接成功.
- "Connected to Anchor/Tag/Listener ID" 标签/基站已连接并且在接收 TOF 数据
- "No location solution" 根据测距数据软件无法解算坐标
- "Open error" 软件打开虚拟串口失败

7.2.3 视图设置 View Settings

视图设置包括三个表: configuration, floorplan 和 grid。

• Configuration Table

名字	描述			
Tracking/Navigation Mode	定位模式			
Geo-Fencing Mode	超范围报警模式			
Zone1	范围 1			
Zone2	范围 2			

Alarm Outside/Inside	在圈外/圈内报警
Show Tag History (N)	显示最近的 N 个历史点
Show Tag Table	显示 Tag Table
Show Anchor Table	显示 Anchor Table
Auto Positioning	自动定位模式,在这个模式下,基站位置不需要设置,进行
Filtering	设置数据过滤
Logging	是否生成日志

Grid Table

名字	描述
Width	宽度,单位米
Height	高度,单位米
show	是否显示格点

Floor Plan tab

名字	描述
Open	打开一张地图,并导入软件
X offset	在 X 方向上以像素为单位,平移地图
Y offset	在 Y 方向上以像素为单位, 平移地图
X scale	在 X 方向上以像素为单位, 缩放地图
Y scale	在 Y 方向上以像素为单位, 缩放地图
Flip X	在 X 轴为对称轴,进行镜像
Flip Y	在 Y 轴为对称轴,进行镜像
show	是否显示原点
Set Origin	设置原点
X Scale button	点击这个按钮会产生一个小工具,用于测量地图上距离,输入实际距离,设置 X 缩放值
Y Scale button	点击这个按钮会产生一个小工具,用于测量地图上距离,输入实际距离,设置 Y 缩放值

7.3 数据帧 TOF Report Message

打开任意串口调试助手,无需设置波特率等参数,可以观察到基站 A0 通过 USB 虚拟串口给 PC 端的 USB 传送数据 格式如下:

- 1. mr 0f 000005a4 000004c8 00000436 000003f9 0958 c0 40424042 a0:0
- 2. ma 07 0000000 0000085c 00000659 000006b7 095b 26 00024bed a0:0
- 3. mc 0f 00000663 000005a3 00000512 000004cb 095f c1 00024c24 a0:0

MID MASK RANGEØ RANGE1 RANGE2 RANGE3 NRANGES RSEQ DEBUG aT:A

表 7.3.1 TOF 数据格式表

内容	功能
MID	消息 ID, 一共有三类,分别为 mr, mc, ma
	mr 代表标签-基站距离(原生数据)
	mc 代表标签-基站距离(优化修正过的数据,用于定位标签)
	ma 代表基站-基站距离(修正优化过,用于基站自动定位)
MASK	表示 RANGE0, RANGE1, RANGE2, RANGE3 有哪几个消息是有效的;
	例如: MASK=7 (0000 0111) 表示 RANGE0, RANGE1, RANGE2 都有效
RANGEO	如果 MID = mc 或 mr,表示标签 x 到基站 0 的距离,单位:毫米

RANGE1	如果 MID = mc 或 mr,表示标签 x 到基站 1 的距离,单位:毫米				
	如果 MID = ma, 表示基站 0 到基站 1 的距离,单位:毫米				
RANGE2	如果 MID = mc 或 mr,表示标签 x 到基站 2 的距离,单位:毫米				
	如果 MID = ma, 表示基站 0 到基站 2 的距离,单位:毫米				
RANGE3	如果 MID = mc 或 mr,表示标签 x 到基站 3 的距离,单位:毫米				
	如果 MID = ma, 表示基站 1 到基站 2 的距离,单位:毫米				
NRANGES	unit raw range 计数值(会不断累加)				
RSEQ	range sequence number 计数值(会不断累加)				
DEBUG	如果 MID=ma,代表 TX/RX 天线延迟				
aT:A	T 是标签 ID,A 是基站 ID				
	此处提到的 ID 只是一个 short ID,完整的 ID 是 64 bit 的 ID				

7.4 日志文件 Log Files

在使用上位机时,点击"Start",在 Log 文件夹下,会产生 *yyyymmdd_hhmmssRTLS_log.txt* 文本格式的日志文件,含义如下:

Log 内容	含义
T:151734568:DecaRangeRTLS:LogFile:Ver. 2.10	15:17, 34 秒,568ms, 版本号 V2.10;当前连接到 A0, 6.8M, Channel 2
TREK:Conf:Anchor0:1:Chan2	
T:151734600:AP:0:-2.4:0:0	15:17, 34 秒,600ms, Anchor Position 0 (X, Y, Z)
T:151734600:AP:1:4.8:0:0	
T:151734600:AP:2:4.8:11.5:0	
T:151734600:AP:3:-2.4:11.5:0	
T:151734614:RR:0:0:8808:8808:147:27185	RR: Range Report: TagID: AnchorID: Reported Range: Corrected Range:
T:151734614:RR:0:1:9174:9174:147:27185	Sequence# : Range Number
T:151734614:RR:0:2:5668:5668:147:27185	
T:151734614:RR:0:3:4815:4815:147:27185	
T:151734614:LE:0:2627:146:[0.743669,7.9919,-	LE: Location Estimate: TagID: LE Count: Sequence #:[x,y,z]:
1.89245]:8794:9160:5687:4773	Range to A0: Range to A1: Range to A2: Range to A3:
T:151734614:TS:0 avx:0.786397 avy:8.00351 avz:-	TS: Tag Statistics: TagID: Average X: Average Y: Average Z
1.93044 r95:0.0732666	

表 7.4 Log 文件对应的含义

7.5 三边定位法 Trilateration 的原理与计算方法

7.5.1 三边定位法理论基础

三边测量法的原理如右图所示,以三个节点 A、B、C 为圆心作圆,坐标分别为 (X_a, Y_a) , (X_b, Y_b) , (X_c, Y_c) ,这三个圆周相交于一点 D,交点 D 即为移动节点, A、B、C 即为参考节点, A、B、C 与交点 D 的距离分别为d_a, d_b, d_c。假设交点 D 的坐标为(X,Y)。

$$\begin{cases} \sqrt{(X - X_a)^2 + (Y - Y_a)^2} = d_a \\ \sqrt{(X - X_b)^2 + (Y - Y_b)^2} = d_b \\ \sqrt{(X - X_c)^2 + (Y - Y_c)^2} = d_c \end{cases}$$
(7.5.1)

由式 7.5.1 可以得到交点 D 的坐标为:

$$\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} 2(X_a - X_c) & 2(Y_a - Y_c) \\ 2(X_b - X_c) & 2(Y_b - Y_c) \end{pmatrix}^{-1} \begin{pmatrix} X_a^2 - X_c^2 + Y_a^2 - Y_c^2 + d_c^2 - d_a^2 \\ X_a^2 - X_c^2 + Y_b^2 - Y_c^2 + d_c^2 - d_a^2 \end{pmatrix}$$
(7.5.2)

三边测量法的缺陷是:由于各个节点的硬件和功耗不尽相同,所测出的距离不可能是理想值,从而导致上面的三个圆未必刚

好交于一点,在实际中,肯定是相交于一个小区域,因此利用此方法计算出来的(x, y)坐标值存在一定的误差。这样就需要通过一定的算法来估计一个相对理想的位置,作为当前移动节点坐标的最优解。

7.5.2 三边定位法的实现过程

在 trilateration.cpp 文件中, GetLocation()这个函数所实现的功能是: 传入基站的坐标(单位: m)及每个基站到标签的距离 (单位: mm), 计算 Tag 的 Best Solution (单位: m)。

前节提到,因为所测出的距离不可能是理想值,从而导致上面的三个圆未必刚好交于一点,所以,当基站 A0/A1/A2 在工作的时候,从数学角度,将会有 2 个解;当有 A0/A1/A2 在工作的时候,必有一个最优解。A3 作为辅助的基站,在 A0/A1/A2 完成一次 Trilateration 算法后,得到两个解,将离 A3 球面最近的解,作为最优解。 注: trilateration.cpp 文件,是 PC 端源代码,4基站4标签以上的套件,免费提供。

7.5.3 Z 轴准确度比 X 轴 Y 轴要差一些?

如图所示, A0/A1/A2 为 3 个基站, T0 为标签, L_{A0T0} L_{A1T0} L_{A2T0} 表示为每个基站到标签的距离。在测距完全准确的情况下,解算的 Tag 坐标应该在 T0,但是,由于实际测量值 L_{A0T0} L_{A1T0} L_{A2T0} 可能偏大,解算的位置在 T0'。因为 A0/A1/A2 都在 *xoy* 平面,所以,测距的误差绝大多数会累加到 z 轴上,造成 z 轴数据的抖动。

图 7.5.3 Z 轴数据误差示意图

8 UWB 产品化开发

8.1 数据标定方法

部分客户反应, UWB 模块测量值, 总是比实际距离要大一些; 部分用户反应, UWB 模块测量值比实际距离要小, 这是怎么一回事呢? 这是由于, 我们使用的现场, 环境都是不同的, 受经纬度、空气质量、环境障碍物、海拔等等因素干扰, 所以在 产品化的进程中, 必须要对模块进行校准。

一般情况下,校准只需要在现场进行一次,通过1个 Anchor 和1个 Tag 的测距,得到修正系数,并不需要每个 Anchor 和 Tag 都进行标定。

利用 Microsoft 2016 Excel 软件,进行数据拟合,并生成拟合公式。拟合公式有很多,最简单的是线性方程。

图 8.1 Mini3 标定 EXCEL 表格

测距值存在 instancegetidist_mm(0), instancegetidist_mm(1), instancegetidist_mm(2), instancegetidist_mm(3), 这四个变量里, 每 个距离,都需要代入刚才计算出来的校准公式内。在 main.c 函数中,原程序为:

- 1. n = sprintf((char*)&usbVCOMout[0], "mc %02x %08x %08x %08x %08x %04x %02x %08x %c%d:%d\r\n",
- 2. valid, instancegetidist_mm(0), instancegetidist_mm(1),
- 3. instancegetidist_mm(2), instancegetidist_mm(3),
- 4. l, r, rangeTime,
- 5. (instance_mode == TAG)?'t':'a', taddr, aaddr);

我们将其改为:

1. n = sprintf((char*)&usbVCOMout[0], "mc %02x %08x %08x %08x %08x %04x %02x %08x %cd:%d\r\n",
2. valid, (int)((instancegetidist_mm(0)*0.9972)-613.42), (int) ((instancegetidist_mm(1)*0.9972)-613.42),

- (int) ((instancegetidist_mm(2)*0.9972)-613.42), (int) ((instancegetidist_mm(1)*0.9972)-613.42),
- 3. (int) ((insta 4. l, r, rangeTime,
- 5. (instance_mode == TAG)?'t':'a', taddr, aaddr);

重新编译软件,只需要将程序下载到和电脑连接的 UWB 模块里即可,不需要每个模块都下载。通过数据修正,UWB 模块测量的距离值,有非常高的准确度。

8.2 进一步提升测距刷新速率的方法

如果只用到 1 个标签,可以通过如下方式进行提升测距的刷新速率,在 instance.h 文件中:

- 将 ANCTOANCTWR (基站-基站测距) 改为 0;
- 将 MAX_TAG_LIST_SIZE (最大标签数) 改为 1;
- 将 MAX_ANCHOR_LIST_SIZE (最大基站数) 改为 1;

在 main.c 函数中,在 sfCongfig_t sfConfig[4]结构体数组中,

• Mode 1/2/3/4 中,将 number of slots 个数改为 2;

8.3 进一步提升定位刷新速率的方法

如果只用到 4 个标签, 3 个基站,可以通过如下方式进行提升测距的刷新速率,在 instance.h 文件中:

- 将 ANCTOANCTWR (基站-基站测距) 改为 0;
- 将 MAX_TAG_LIST_SIZE (最大标签数) 改为 4;
- 将 MAX_ANCHOR_LIST_SIZE (最大基站数) 改为 3;

在 main.c 函数中,将 sfCongfig_t sfConfig[4]结构体数组修改为:,

```
1.
     sfConfig_t sfConfig[4] =
2.
   {
         //mode 1 - S1: 2 off, 3 off
3.
4.
         {
             (28),
5.
                     //ms -
                    //thus 4 slots
6.
             (4),
             (4*28), //superframe period
7
8.
             (4*28), //poll sleep delay
9.
             (20000)
10.
         //mode 2 - S1: 2 on, 3 off
11.
12.
                    // slot period ms
// number of slots
13.
             (10),
14.
             (4),
15.
             (4*10), // superframe period (40 ms - gives 25 Hz)
             (4*10), // poll sleep delay (tag sleep time, usually = superframe period)
16.
17.
             (2500)
18.
         //mode 3 - S1: 2 off, 3 on
19
20.
21.
             (28),
                       // slot period ms
                      // thus 4 slots - thus 112ms superframe means 8.9 Hz location rate
22.
             (4),
23.
              (4*28), // superframe period
24.
             (4*28),
                      // poll sleep delay
25.
             (20000)
26.
         //mode 4 - S1: 2 on, 3 on
27.
28.
         {
             (10),
                    // slot period ms
// thus 4 slots - thus 40 ms superframe means 25 Hz location rate
29.
30.
             (4),
             (4*10), // superframe period (40 ms - gives 25 Hz)
31.
             (4*10), // poll sleep (tag sleep time, usually = superframe period)
32.
             (2500) // this is the Poll to Final delay - 2ms
33.
34.
         }
35. };
```

8.4 遮挡对室内定位 UWB 的影响

遮挡对 UWB 定位的影响主要分以下几种情形:

- 1) 实体墙:一堵实体墙的这种遮挡将使得 UWB 信号衰减 60-70%定位精度误差上升 30 厘米左右,两堵或者两堵以上的实体墙遮挡,将使得 UWB 无法定位。
- 2) 钢板:钢铁对 UWB 脉冲信号吸收很严重,将使得 UWB 无法定位。
- 3) 玻璃:玻璃遮挡对 UWB 定位精度有较大影响。
- 4) 木板或纸板:一般厚度 10 厘米左右的木板或纸板对 UWB 定位精度没太大影响。
- 5) 电线杆或树木:电线杆或者书面遮挡时需要看他们之间距离基站或者标签的距离,和基站和标签的相对距离比较是否很小,比如,基站和定位标签距离 50 米,电线杆或者树木正好在两者中间,25 米处,这种遮挡就无大的影响,如离基站或者标签距离很近小于1米,影响就很大。

9 AT 指令集

9.1 AT+QSET 指令

固件版本 1.9.4 以上, 且购买超过 8 标签的客户, 可获得 AT+QSET 指令支持 4 基站 N 标签 (N≥9) 的套件。

表 9.2 AT 指令集

PC 发起命令 类型		含义	UWB 模块应答
AT+INF?	查询命令	打印 UWB 配置信息	返回配置信息
AT+STAR	控制命令	模块重启	OK+STAR
AT+RSET	控制命令	模块 Flash 擦除,并重启	OK+REST
AT+LPOW=x	控制命令	X=0 正常模式;X=2 低功耗模式	OK+LPOW
AT+QSET=xx-xxx	控制命令	快速设置传输速率、频段、模式与 ID(如下)	OK+QSET=xx-xxx

注:所有命令必须以回车结尾。

9.1.1 设置方式

ID 位,可设置为 00~31 如果是基站,ID 不可大于 3	
模式位,可设置为 A 或 T, A 表示基站,T 表示标签	
	AT+QSET=F2-T11
速率位,可设置为 F 或 S,	↑↑
F 表示 6.8M, S 表示 110K	
频段位,可设置为2或5,	
2 表示频段 2, 5 表示频段 5	

9.1.2 举例说明

例子 1:将该模块设置成基站,110k 传输速率,通道 2,地址是 1 号,那么应该发送 AT+QSET=S2-A01 例子 2:将该模块设置成标签,6.8M 传输速率,通道 5,地址是 31 号,那么应该发送 AT+QSET=F5-T31 注意:基站的地址,只能是 0/1/2/3,暂不支持超过 4 个基站;默认速率是 110k,信道 2,在 1 套系统中,基站和 标签的传输速率、频段应该要保持一致。

9.1.3 模块默认配置指令

表 9.2.3AT+SW 模块默认配置指令

模块	指令	模块	指令	模块	指令	
基站 A0	AT+QSET=S2-A0	标签 T0	AT+QSET=S2-T0	标签 T4	AT+QSET=S2-T4	
基站 A1	AT+QSET=S2-A1	标签 T1	AT+QSET=S2-T1	标签 T5	AT+QSET=S2-T5	
基站 A2	AT+QSET=S2-A2	标签 T2	AT+QSET=S2-T2	标签 T6	AT+QSET=S2-T6	
基站 A3	AT+QSET=S2-A3	标签 T3	AT+QSET=S2-T3	标签 T7	AT+QSET=S2-T7	

10 订购信息

10.1 联系方式

ProTag2s 技术问题、零售、批量采购请联系: 林总 15606880772 (商务) 吴工 13296707815 (技术售后) QQ: 171932915 微信: 15606880772 淘宝购买地址: https://ychiot.taobao.com/ 公司网站: http://www.ychiot.com/

10.2 对公转账信息

公司名称: 温州市研创物联网科技有限公司 开户行: 中国工商银行温州鹿城茶山高教园区支行 公司账号: 1203227909000033801

11文档管理信息表

主题	UWB ProTag2s 开发文档	
版本	V1.1	
参考文档	dw1000-datasheet-v2.08 dwm1000-datasheet-v1.3 evk1000_user_manual_v1.11 trek1000_user_manual_v1.04	
创建时间	2018/4/5	
创建人	Lynn	
最新发布日期	2019/5/5	

更改人	日期	文档变更纪录
Lynn	2018/4/5	硬件 V1.0 产品说明手册
Lynn	2018/12/27	ProTag2s 硬件 V1.1 产品说明手册
Lynn	2019/5/5	ProTag2s 硬件 V1.2 产品说明手册